生物辨識科技

Reported: 台北工程部

Date: Dec 14th 2018

Update: May 20th 2019

- 起源
- 種類
- 應用
- 指紋辨識技術
- 螢幕指紋辨識

為什麼生物辨識(Biometric)產業越來越受到重視? 分析其英文Biometric一字就是來自於 希臘字bio(生命)及metric(可計量)二字, 意思就是可以透過人體上的生理特徵或是行為特徵來進行計算、測量, 進而可以辨識一個人的身分。

事實上生物辨識並不是一個新觀念,過去生物辨識的技術以及應用早就大量使用在犯罪偵防、海關出入境管制以及各種數位裝置的開啟。

不過,除了在預防犯罪及犯罪搜查之外,生物辨識也開始應用在其他層面,並且開始進入公共安全的範圍,相關科技也百花齊放。

為何要使用生物辨識?

• 持有物理認證

卡片

鑰匙

缺點:失竊/偽造/遺失危險性

• 秘密情報的認證

缺點:忘記/借用/盜用

· 利用個人身體的特徵

身體外部

身體內部

- 虹膜
- 指紋
- 聲音

静脈

優點:

■ 普遍姓:任何人皆有的特徵

□ 唯一性:除本人外無相同的特徵

■ 永續性:長時間的經過亦不會改變

為何要使用生物辨識?

- 唯一性:獨一無二的特徵。
- 普遍性:大眾們都有相同的型態特徵。
- 永久性:特徵不因時間而改變,或者改變非常的緩慢。
- 可測性:可用精簡的技巧去測量其相似度。
- 方便性:量測的器具要容易攜帶。
- 接受性:能被社會大眾們接受的量測方式。
- 不可欺性:儀器不因偽裝而被欺騙。

AENEAS

• 人臉識別

• 簽名辨識

• 指紋識別


• 虹膜辨識

• 語音識別

• 靜脈辨識

DNA辨識

優缺點比較

	原理	優點	缺黑占
指紋辨識	利用每個人手指指紋圖像 特徵不同,來辨識其身份。	1.指紋每個人都不一樣。 2.資料庫系統建立較早。	1.指紋容易被他人取得。 2.為接觸式辨識,容易產生衛生問題。 3.手容易出汗或是手指磨損受傷可能會影響辨識結果。
虹膜辨識	虹膜為附著在瞳孔上的生 理薄膜,利用每人顏色和 結構特徵獨特來進行辨識。	1.虹膜特徵紋理結構複雜 不易改變。 2.不易被複製或取得。 3.精準度高。	1.掃描範圍必須只控制在眼睛範圍。 2.透過紅外線掃描可能會有傷害眼睛的風險。 3.辨識機器較昂貴。
聲音辨識	利用每個人聲帶和聲道的 生理結構不同,分析說話 者特性來做語音辨識。	每個人說話習慣所成現的 聲波幅度不同。	聲音有可能因為各種因素面臨 變聲,影響辨識準確度。
人臉辨識	利用人臉五官輪廓的角度、 距離來建立3D結構模型, 進行身份辨識。	1.為非接觸式的辨識,不會有衛生問題。 2.簡單方便,速度快。 3.人臉辨識無法以照片作假;不會受帽子、眼鏡其他外物影響。	少數可能受環境光線影響。

生物辨識科技應用

• 行動裝置:

• 機場安檢:

• 門禁系統:

• ATM提款:

• 行動支付:

• 車站進站:

原理

每枚指紋大約會有50個左右的特徵點,取得特徵點的位置與方向, 就能用於指紋的辨識。。

指紋辨識器由軟體與硬體共同構成, 硬體部分是指紋感應器,用於採集指紋。 軟體則是指紋辨識演算法,透過演算法比對資料庫內的指紋檔案。

錯誤接受率(False Acceptance Rate,FAR) 錯誤拒絕率(False Rejection Rate,FRR)

FAR代表安全程度,越低越安全。 FRR關係便利性,數值越低越便於使用。

種類

光學式 要掃瞄紋路最直覺的方式就是直接翻拍掃瞄,要讓紋路細節顯現出來則是依靠光線。
光學式無使用昂貴的電容感應晶片,因此耐用度較高且成本低廉。

電容式 指紋說穿了就是手指的紋路,要讓電腦掃到這些紋路,可 透過手指的電荷變化、溫度差、壓力等方式掃瞄。

超音波式 只要利用聲波直接穿透皮膚的外層,不用接觸就能檢測手 指的3D細節如指紋脊、汗毛孔等獨特的指紋特徵,並進 行辨識。

方案

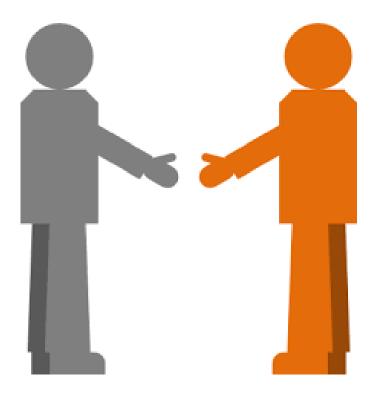
光學式

廠商:

新思(Synaptics)、敦泰 匯頂 (Goodix) 、義隆、神盾

• 超音波式

廠商:


高通(Qualcomm)

原理:

把感應器放置在螢幕與主機板之間, 透過 OLED 螢幕所具備的自發光特性 照亮指紋紋理,當指紋在輕觸螢幕表 面時,指紋反射的光線能透過螢幕下 方的感應器進行辨識。

