DCDC基礎測試:如何量測效率量

Reported FAE Dept.

- 1.效率的重要性
- 2.量測線路架構
- 3.線路架構注意事項
- 4.使用儀器
- 5.量測手法
- 6.量測數值

效率是電源測試中十分常見的測項,高效能的電源表現是眾多廠商依值追求的目標。在IC規格書中,一般會提供幾種常見的輸入輸出應用下的效率曲線,當如果實際應用範圍規格書不同,或者在Demoboard的基礎上變動了其他數值,就需要作效率的量測。

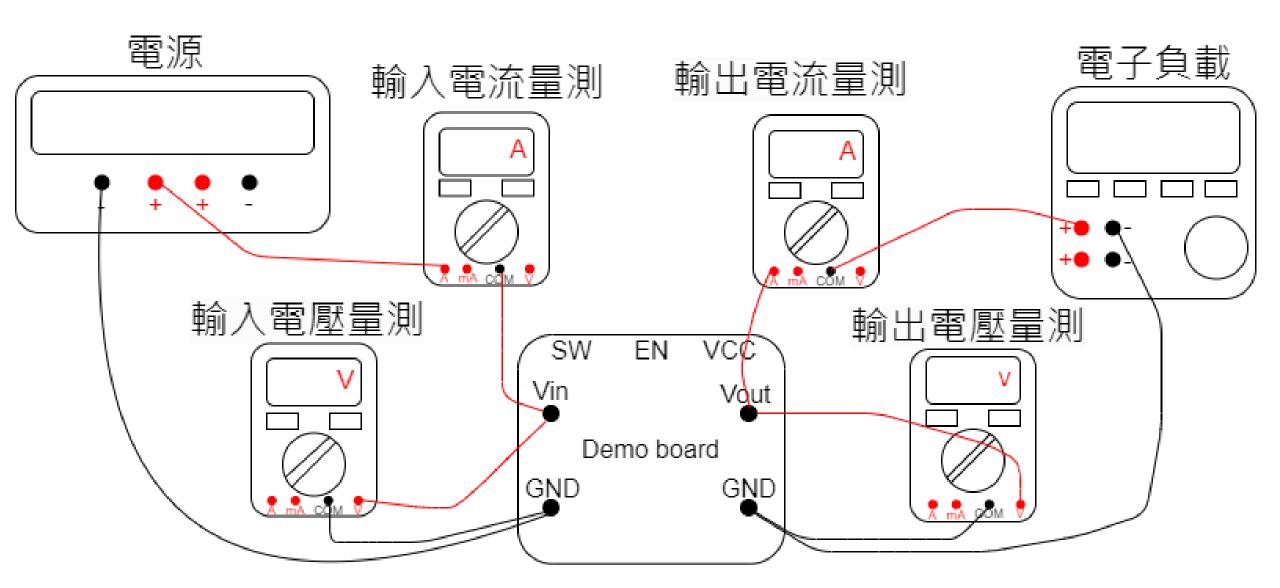
效率量測的公式如下:

$$\eta = \frac{Pout}{Pin} = \frac{Vout * Iout}{Vin * Iin}$$

何謂效率 (η):

效率指的是輸入功率與輸出功率的比值,只要是能量的轉換, 就會有功率的損耗,因此轉換之後能保有越多原先的功率, 轉換效率就越好。

理想的功率轉換:


但實際上,功率轉換一定會有損失,結果不會是100%,越接近100%, 效果就越好。

範例: -DCDC輸入電壓12V, 輸出電壓5V, 輸入電流0.5A, 輸出電流1A則:

EX:
$$\eta = \frac{5 \times 1}{12 \times 0.5} \times 100\% = 83.3\%$$

線路架構注意事項

- 使用電壓檔位時,須將三用電表並聯在電路中,注意正負極;使用電流檔位時,則是串聯, 須注意電流方向。
- 2. 使用電流檔時,一開始切換到安培檔位,假如顯示數值不夠精確時,再切換至毫安培檔位進行量測。如果,用毫安培的檔位測試,調高負載電流時,須留意是否超過毫安培檔位的上限(一般在400mA),若是不小心超過,有可能導致三用電表的保險絲燒毀。
- 3. 三用電表切換到電壓檔位,量測端的連接線盡量短,以免影響量測結果。

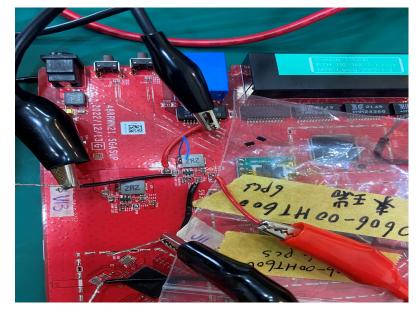
電源供應器:

KEYSIGHT U8031A

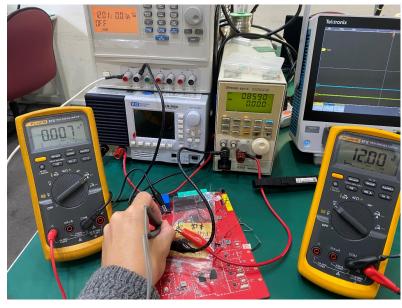
電子負載機:

Chroma 63010

三用電表:



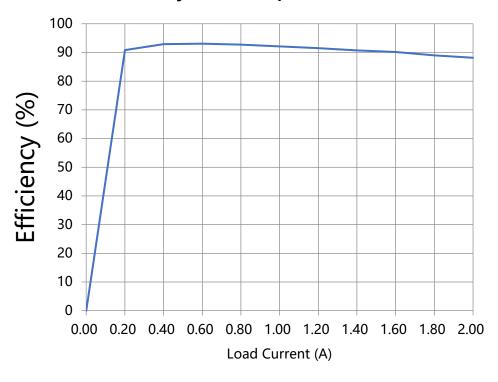
FLUKE 87 II


🔔 量測手法

一.接上電源

二.檢查輸入電壓

三.調整負載數值


注意事項:

- 確認需要測試的條件:輸入電壓、輸出電壓、及輸出電流。
- 確認測試板在測試條件下工作正常,輸入及輸出電壓正確,觀察SW波型,在輕載與重載時SW波型是否正常, 無發熱以及無嘯叫。 (嘯叫:電感發出的異音)
- 3. 依照測試條件,慢慢調整負載電流,須等三用電表上數值穩定時再記錄下來。另外,輸入電壓可能會隨著負 載上升有所下降而低於測試條件,所以需適當的調高輸入電壓,盡量保持測試時輸入電壓與電壓三用電表上 數值與測試一致。

測試條件: 12V to 3.3V(2A)						
Vin (V)	lin (A)	Win (W)	Vout (V)	lo(A)	Wout (W)	效率 (%)
12.000	0.000	0.000	3.280	0.000	0.000	0.000
12.000	0.060	0.720	3.270	0.200	0.654	90.833
12.000	0.117	1.404	3.260	0.400	1.304	92.877
12.000	0.175	2.100	3.257	0.600	1.954	93.057
12.000	0.234	2.808	3.254	0.800	2.603	92.707
12.000	0.294	3.528	3.250	1.000	3.250	92.120
12.000	0.355	4.260	3.247	1.200	3.896	91.465
12.000	0.417	5.004	3.243	1.400	4.540	90.731
12.000	0.479	5.748	3.238	1.600	5.181	90.132
12.000	0.545	6.540	3.233	1.800	5.819	88.982
12.000	0.610	7.320	3.226	2.000	6.452	88.142

Efficiency vs. Output Current

效率曲線圖

Thank You!

